Vector-valued singular integrals and maximal functions on spaces of homogeneous type
نویسندگان
چکیده
The Fefferman-Stein vector-valued maximal function inequality is proved for spaces of homogeneous type. The approach taken here is based on the theory of vector-valued Calderón-Zygmund singular integral theory in this context, which is appropriately developed.
منابع مشابه
A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملPseudo-localization of Singular Integrals and Noncommutative Calderón-zygmund Theory
After the pioneer work of Calderón and Zygmund in the 50’s, the systematic study of singular integrals has become a corner stone in harmonic analysis with deep implications in mathematical physics, partial differential equations and other mathematical disciplines. Subsequent generalizations of Calderón-Zygmund theory have essentially pursued two lines. We may either consider more general domain...
متن کاملSingular Integrals and Approximate Identities on Spaces of Homogeneous Type1 by Hugo Aimar
In this paper we give conditions for the L2-boundedness of singular integrals and the weak type (1,1) of approximate identities on spaces of homogeneous type. Our main tools are Cotlar's lemma and an extension of a theorem of Z6. Introduction. The behavior of singular integrals and approximate identities as operators on the space of integrable functions, i.e. the weak type (1,1), can be investi...
متن کاملWeight Inequalities for Singular Integrals Defined on Spaces of Homogeneous and Nonhomogeneous Type
Optimal sufficient conditions are found in weighted Lorentz spaces for weight functions which provide the boundedness of the Calderón– Zygmund singular integral operator defined on spaces of homogeneous and nonhomogeneous type. 2000 Mathematics Subject Classification: 42B20, 42B25.
متن کاملGeneralized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series
In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.
متن کامل